1 Pion Capture

1.0.1 Initial KE Distribution

e.g. from 24 GeV p's on Hg

- similar distributions
- Reasonable $\approx 50-250 \text{ MeV}$
- $\sigma_{p\perp} \approx 150 \text{ MeV/c}$

1.1 Magnetic Horn Capture

1.1.1 Horn theory

Outside an axial conductor

$$B = \frac{\mu_o I}{2 \pi} \frac{1}{r}$$

Bending:

$$\frac{d\theta}{ds} = \frac{B c}{(p)}$$

Minimum radius set by inward forces. Find exit shape to focus mom=p:

1.1.2 Example

CERN Design

1.2 Solenoid Capture

In the transverse plane:

$$r \; = \; \frac{(p_\perp)}{c \; B}$$

For particles generated in a thin target on the axis, inside a solenoid of inside radius R, the maximum transverse momenta captured will be:

$$(p_{\perp}(max)) = \frac{c B_z R}{2} \tag{1}$$

e.g. For a 20 T solenoid of 8 cm radius, (These are the dimensions of an existing resistive solenoid at FSU)

$$p_{\perp}(max) = 240 MeV/c$$

Contains å80% of π 's below 250 MeV

1.3 Adiabatic Matching

The match between a target capture Solenoid and a decay channel solenoid can be made, with negligible loss, by gently tapering the magnetic field 1 .

The condition for "gentleness" is that $d\beta/\beta$, is small in a distance equal to the current β :

$$\frac{d\beta}{\beta} \ll \frac{dz}{\beta}$$

or

$$\frac{d\beta}{dz} = \epsilon \ll 1$$

Since $\beta \propto 1/B_{solenoid}$:

$$\frac{d(1/B)}{dz} \; = \; \epsilon \; \ll \; 1$$

which gives:

$$B(z) = \frac{B_o}{1 + k z} \tag{2}$$

where

$$k = \epsilon \frac{B_o c}{2 (pc/e)} \tag{3}$$

Note that the B drops initially very fast, corresponding to the short β 's at the high initial field, but falls much slower at the lower later fields where the β 's are long.

For a taper from 20T to 1.25T at momenta less than 1 GeV and $\epsilon=.5,$ the taper length should be approximately 6 m.

¹R. Chehab, J. Math. Phys. 5 (1978) 9.

1.4 Phase Rotation

1.4.1 Introduction

- Initial pions have rms dp/p \approx 100%
- rms Acceptance of cooling \approx 8%

Phase Rotate

• Increase dt

• Decrease dE

1.4.2 Time Jitter from Pion Decay

If the p bunch had zero length, and there was no decay, then after a drift the momentum vs. time distribution has zero width and phase rotation is ideal.

But since the pions decay to muons

 $(\pi \to \mu + \nu)$ there is a spread from the random pion decay angle and decay position:

Decay in Center of Mass

$$p_{\mu} \approx 30 \text{ MeV/c} \approx m_{\pi} - m_{\mu}$$

Isotropic, so

$$rac{dn}{dp_{\mu z}}$$
 is flat from -30 to 30 MeV/c

$$E_{\mu} = \sqrt{p_{\mu}^2 + m_{\mu}^2} \approx m_{\mu}$$

Lorentz Boost to velocity of initial π

$$\gamma_{\pi} = \frac{\text{KE} + m_{\pi}}{m_{\pi}}$$

$$\beta_{\pi} = \sqrt{1 - \frac{1}{\gamma_{\pi}^2}}$$

$$E_{\mu}(\text{final}) = \gamma_{\pi} \quad E_{\mu}(\text{c of m}) + \beta_{\pi}\gamma_{\pi} \quad p_{z}(\text{c of m})$$

$$\gamma_{\mu}(\text{final}) \approx \gamma_{\pi} \pm \beta_{\pi} \gamma_{\pi} \left(\frac{m_{\pi} - m_{\mu}}{m_{\mu}}\right)$$

$$\frac{dn_{\mu}}{dE_{\mu}}$$

$$0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad \frac{\gamma_{\mu}}{\gamma_{\pi}}$$

$$0.00 \quad 0.25 \quad 0.50 \quad 0.75 \quad 1.00 \quad \underline{E_{\mu}}$$

$$< \gamma_{\mu} > = \gamma_{\pi} = \gamma$$

$$\Delta \gamma_{\mu} = \pm \beta \gamma \quad \left(\frac{m_{\pi} - m_{\mu}}{m_{\mu}}\right)$$

$$\Delta \beta_{\mu} \approx \frac{d\beta}{d\gamma} \Delta \gamma_{\mu} = \frac{1}{\gamma^{3}\beta} \beta \gamma \quad \left(\frac{m_{\pi} - m_{\mu}}{m_{\mu}}\right)$$

$$\Delta \beta_{\mu} = \frac{1}{\gamma^{2}} \left(\frac{m_{\pi} - m_{\mu}}{m_{\mu}}\right)$$

If decay occured at distance $\ell=\beta c\gamma \tau$ then Δt between forward and backward cases:

$$\Delta t \approx \frac{d}{d\beta} \left(\frac{L}{\beta c} \right) \Delta \beta = \frac{1}{\beta^2 c} \beta c \gamma \tau \Delta \beta$$
$$\Delta t \approx \frac{\tau}{\beta \gamma} \left(\frac{m_\pi - m_\mu}{m_\mu} \right)$$

The rms spread of a uniform distribution = $\sqrt{1/3} \times \max$, and the rms of the exponential is = $\sqrt{2} \times \tau$

$$\sigma_t \approx \sqrt{\frac{2}{3}} \frac{\tau}{\beta \gamma} \left(\frac{m_\pi - m_\mu}{m_\mu} \right)$$

Conclusion on jitter from decay

If we capture muons from 50 to 250 MeV, the average $KE_{\pi} \approx 190$ MeV, where $\sigma_t \approx 2.7$ ns. If we want the broadening from the proton σ_t to be < 10% then σ_t (p beam)< 1.2 (nsec). For a 40% effect, it could be 2.7 nsec.

1.4.3 Phase Space Conservation

For initial $\Delta E = 200$ MeV (full width) $\times \delta t = 4$ nsec (rms) (time is set by fluctuations in decay)

If final $\delta E/E$ 8% (rms) at 200 MeV (δE =16 MeV (rms)):

$$\Delta t(final) \ = \ \frac{200(full) \times 4(rms)}{16(rms)} \ = \ 50nsec(full)$$

To capture and accelerate this we need frequency $\ll 1/50 (\text{nsec})$, i.e. $\ll 20 \text{ MHz}$

• KEK: 5 MHz which would allow only low gradients.

• CERN: 44 or 88 MHz

 \bullet PJK: 30 MHz but got dp/p ${\approx}15~\%$

1.4.4 Examples without re-bunching

e.g. CERN

- 30 m decay channel
- 30 m 2 MV/m 44 MHz RF
- Captures $\approx 120\text{-}300 \text{ MeV}$
- Gives ≈ 4 m long bunch
- and $\approx \pm 5\%$

e.g. PJK

	Len	freq	Grad
	m	MHz	MV/m
Drift	6		
RF	12	40	6
RF	24	30	5
RF	5	45	6

- ≈ 6 m long bunch
- $\approx 12 \% dE/E$

1.4.5 Examples with Re-Bunching

Alternative allowing higher frequencies:

Re-bunching increases dE/E by $\approx\!\!4$ × So require dE/E $\approx\!\!2\%$ before re bunching And $\Delta t \approx\!\!50$ nsec $\times 4~\approx~200$ nsec

US Study 1 had ≈ 150 nsec US Study 2 had ≈ 300 nsec

Too long for conventional rf,

Use Induction Linacs

- \bullet pulses 50-500 nsec
- Grad's ≈1 MV/m

1.5 Induction Linacs

2m Section
95 cm radius
similar to
ATA or DARHT
but
Superconducting
inside coil

1.5.1 Example of Single Linac PR

US Study 1

- Energy spread non uniform "Distorted"
- dp/p rms $\approx 6\%$
- $\bullet \rightarrow 18\%$ after bunching
- particles lost

Figure 6: Beam distributions in E-cT phase space along the induction linac. Distributions from L=0, 20, 60, and 100 m are shown.

1.5.2 Non-Distorting Phase Rotation

. MUC-114

1.5.3 Example of Non-Distorting

Study 2 2-3 Linacs

- 1. 30 m Drift
- 2. Induction Linac to modify E vs $\mathbf t$
- 3. Second drift ($\approx 100 \text{ m}$)
- 4. 2nd Induction Linac to reduce dE/E


```
\begin{array}{ll} \text{Hg Target} & \text{(.45 m)} \\ \text{Induction } \#1 & \text{(100 m)} \\ \text{Mini Cooling} & \text{(3.5 m H}_2) \\ \text{Induction } \#2 & \text{(80 m)} \\ \text{Induction } \#3 & \text{(80 m)} \end{array}
```


- Energy spread more uniform
- dp/p rms $\approx 3\%$
- OK for bunching

1.6 RF Buncher

Three stages:

- 1			•	100 3 577	
	stage		len	$400 \mathrm{\ MHz}$	$200 \mathrm{\ MHz}$
			\mathbf{m}	MV	MV
	1	RF	2.75	-2.38	9.55
		Drift	22		
	2	RF	5.5	-4.46	17.9
		Drift	8.25		
	3	RF	8.25		35.8
		Drift	5.5		

Similar to Study 1

Bunched Phase Rotation

- 1. Drift
- 2. Bunch
- 3. Rotate with high freq. rf

vs. Conventional

- 1. Drift
- 2. Rotate with induction linac
- 3. Bunch

Figure 7: Muon distribution in (E,t)-space along with marginal distributions for 38 vernier (d=0.16) cavities followed by 23 (matched) fixed frequency cavities generated with 1000L program. $N_b=20$ in buncher part. Plots and numbers quoted are based on 188 000 incident protons.

Compare with conventional

- 1. Inevitably Distorting
- 2. Probably less efficient for one sign
- 3. But both signs rotated
- 4. Much less cost than induction